AP Statistics – Chapter 9 Notes: Testing a Claim

9.1: Significance Test Basics

Null and Alternate Hypotheses

The statement that is being tested is called the **null hypothesis** (H_0). The significance test is designed to assess the strength of the evidence against the null hypothesis. Usually the null hypothesis is a statement of "no effect," "no difference," or no change from historical values.

The claim about the population that we are trying to find evidence for is called the **alternative hypothesis** (H_a). Usually the alternate hypothesis is a statement of "an effect," "a difference," or a change from historical values.

Test Statistics

To assess how far the estimate is from the parameter, standardize the estimate. In many common situations, the test statistics has the form

test statistic = $\frac{estimate - parameter}{standard deviation of the estimate}$

P-value

The p-value of a test is the probability that we would get this sample result or one more extreme if the null hypothesis is true. The smaller the p-value is, the stronger the evidence against the null hypothesis provided by the data.

Statistical Significance

If the P-value is as small as or smaller than alpha, we say that the data are statistically significant at level alpha. In general, use alpha = 0.05 unless otherwise noted.

A Plan for Carrying out a Significance Test:

- 1. *Hypotheses*: State the null and alternate hypotheses
- 2. Conditions: Check conditions for the appropriate test
- 3. Calculations: Compute the test statistic and use it to find the p-value
- 4. Interpretation: Use the p-value to state a conclusion, in context, in a sentence or two

Type I and Type II Errors

There are two types of errors that can be made using inferential techniques. In both cases, we get a sample that suggests we arrive at a given conclusion (either for or against H_0). Sometimes we get a bad sample that doesn't reveal the truth.

Here are the two types of errors:

Type I – Rejecting the Ho when it is actually **true** (a false positive) **Type II** – Accepting the Ho when it is actually **false** (a false negative)

Be prepared to write, in sentence form, the meaning of a Type I and Type II error in the context of the given situation. The **probability of a Type I error** is the same as alpha, the significance level. <u>You will not be asked to find the probability of a Type II error</u>.

9.2: Tests about a Population Proportion

Z-test for a Population Proportion (one-proportion z-test)

- 1. Hypotheses: H₀: $p = p_0$; Ha: $p < p_0$ or $p > p_0$ or $p \neq p_0$
- 2. Conditions:
 - **Random** does the data come from a random sample?
 - Independent is the sample size less than 10% of the population size?
 - **Normal** Are np_0 and $n(1-p_0)$ both at least 10?
- 3. **Test-Statistic**: $z = \frac{\hat{p} p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$ where \hat{p} is the sample proportion
- 4. **P-value**: The P-value is based on a normal z-distribution. This value can be estimated using Table A or found accurately using the *1-Prop Z-test* function on your calculator

9.3: Tests about a Population Mean

T-test for a Population Mean

- 1. **Hypotheses:** H₀: $\mu = \mu_0$; Ha: $\mu < \mu_0$ or $\mu > \mu_0$ or $\mu \neq \mu_0$
- 2. Conditions:
 - **Random** does the data come from a random sample?
 - **Independent** is the sample size less than 10% of the population size?
 - Normal Is it given or is there a large sample size $(n \ge 30)$?
- 3. **Test-Statistic**: $t = \frac{\bar{x} \mu_0}{s}$ where *s* is the sample standard deviation
- 4. **P-value**: The P-value is based on a t-distribution with n-1 degrees of freedom. This value can be estimated using Table C or found accurately using the *T-test* function on your calculator

Paired Differences T-test

To compare the responses to the two treatments in a paired data design, apply the one-sample t procedures to the observed differences.

For example, suppose that pre and post test scores for 10 individuals in a summer reading program are:

Subject	1	2	3	4	5	6	7	8	9	10
Pre-test	25	31	28	27	30	31	22	18	24	30
Post-test	28	30	34	35	32	31	26	16	28	36
Difference	3	-1	6	8	2	0	4	-2	4	6

We would use the data in the differences row and perform one-sample t analysis on it.