AP Statistics - Chapter 10 Notes: Comparing Two Population Parameters

10.1: Comparing Two Proportions

Conditions for Comparing Two Proportions

- Random- We have two random samples, from two distinct populations
- Independence - Each sample must be selected independently of the other (no pairing or matching) and each distinct population size must be 10 times greater than their samples.
- Normality - Counts of all "successes" and "failures" are at least 10 .

Two-Proportion z Confidence Interval

To estimate the difference between two population proportions ($p_{1}-p_{2}$) use the formula

$$
\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z^{*} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}
$$

Two-Proportion z-Test
To test the hypothesis $\mathrm{H}_{0}: p_{1}=p_{2}$, compute the two-proportion z statistic

$$
z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\frac{\hat{p}_{c}\left(1-\hat{p}_{c}\right)}{n_{1}}+\frac{\hat{p}_{c}\left(1-\hat{p}_{c}\right)}{n_{1}}}}
$$

Where $\hat{p}_{c}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}$ given that $\hat{p}_{1}=\frac{x_{1}}{n_{2}}$ and $\hat{p}_{2}=\frac{x_{2}}{n_{2}}$

10.2: Comparing Two Means

Two-Sample Problems

- The goal of inference is to compare the responses to two treatments or to compare the characteristics of two populations.
- We have a separate sample from each treatment or each population.

Conditions for Comparing Two Means

- Random - We have two random samples, from two distinct populations
- Independence - Each sample must be selected independently of the other (no pairing or matching) and each distinct population size must be 10 times greater than their samples.
- Normality - Both populations are normally distributed or $n_{1} \geq 30$ and $n_{2} \geq 30$.

Two-Sample t Confidence Interval

To estimate the difference between two population means ($\mu_{1}-\mu_{2}$) use the formula

$$
\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t^{*} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}{ }^{2}}{n_{2}}}
$$

Two-Sample t-Test

To test the hypothesis $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$, compute the two-sample t statistic

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}{ }^{2}}{n_{1}}+\frac{s_{2}{ }^{2}}{n_{2}}}}
$$

