AP Statistics Chapter 9 Practice FR Test: Testing a Claim

Show all work for the following on the answer sheet. Answer completely and clearly.

1. A certain intelligence test is designed to have a population of scores following a normal distribution with a mean score of 100. Below are scores on this intelligence test from 6 randomly selected undergraduate students from Thorndike University.

110	118	110	122	110	150

- a) Do these scores suggest that, on average, the population of undergraduates at Thorndike University have higher than average intelligence scores? Carry out an appropriate test at the 5% level to help answer this question.
- b) What would constitute a Type I error for this test?
- 2. A drug manufacturer claims that 9 out of 10 doctors (90%) recommend aspirin for their patients with headaches. To test this claim, a random sample of 100 doctors is obtained. Of these 100 doctors, 82 indicate that they recommend aspirin.
 - a) Do these results support the claim of the drug manufacturer? Support your conclusion with a test of significance. Use $\alpha = .01$.
 - b) What would constitute a Type II error for this test?
- 3. Is a person's pulse rate higher when they are standing than when that person is sitting? To answer this question, a group of 14 students measured each other's pulse rate in both positions. The data collected are given in the table below. Consider this to be a random sample taken from a population in which the difference between these two pulse rate measurements is normal.

Member	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Pulse Rate	62	74	01	00	69	66	72	Q /	72	01	80	72	61	62
Sitting	02	74	02	00	00	00	12	04	12	02	00	12	04	02
Pulse Rate	60	70	20	02	61	76	72	01	02	76	02	74	60	50
Standing	08	/0	80	92	04	70	12	91	82	70	92	/4	00	30
Difference	6	4	-2	4	-4	10	0	7	10	-6	12	2	-4	-4

- a) Carry out an appropriate test to answer the students' question. Use $\alpha = .05$.
- b) Explain why the design of this experiment is better than having two separate treatment groups with one group of students measured while sitting and the other group measured while standing.

AP Statistics Chapter 9 Practice FR Test: SOLUTIONS

1. a) **One-Sample** *T* **Test**

Hypotheses	Test Statistic and P-value
μ = intelligence score of Thorndike U.	$\bar{x} = 120, \ s = 15.543$
students	120-100 a 152 b a 12
$H_0: \mu = 100$	$t = \frac{15.543}{15.543} = 3.152$, P = .013
$H_a: \mu > 100$	$\sqrt{6}$
Conditions	Decision and Conclusion
SRS: random sample stated	• Reject the null at the 5% level
Normal: stated as normal	• The undergrad students at Thorndike Univ.
Independent: $10n = 60$. The population of	appear to be of higher intelligence than the
students should easily be more than 60	average person, as judged by this test.

b) A Type I error would be concluding that Thorndike U. students have higher intelligence test scores when in fact they do not.

2. a) One-Proportion Z Test

Hypotheses	Test Statistic and P-value
p = proportion of doctors who recommend	p = 82/100 = 0.82, n = 100
aspirin for their patients with headaches	0.82 - 0.9 2.667 D 0.04
$H_0: p = 0.9$	$z = \frac{1}{\sqrt{(0.9)(0.1)}} = -2.667, P = .004$
n_{a} . $p < 0.9$	$\sqrt{\frac{(0.5)(0.12)}{100}}$
Conditions	Decision and Conclusion
SRS: random sample stated	• Reject the null at the 1% level
Normal: $100(.9) = 90 \ge 10, 100(.1) = 10 \ge 10$	• The drug manufacturer claim that 90% of
Independent: $10n = 1000$. The population of	doctors recommend aspirin as a treatment
doctors should easily be more than 100	for headaches does not appear to be true.

b) A Type II error would be concluding that 90% of doctors do recommend aspirin for headaches when in fact less than 90% of doctors recommend aspirin for headaches.

Hypotheses	Test Statistic and P-value
μ = mean difference between sitting and	$\bar{x} = 2.5$, $s = 5.984$
standing pulse rates (diff = standing – sitting)	2.5-0 1.562 D 071
$H_0: \mu = 0$	$t = \frac{1.563}{5.984/} = 1.563, P = .0/1$
$H_a: \mu > 0$	$\sqrt{\sqrt{14}}$
Conditions	Decision and Conclusion
SRS: random sample stated	• Fail to reject the null at the 5% level
Normal: stated as normal	• The pulse rate measurements on these
Independent: $10n = 140$. The population of	students do not provide significant
students should easily be more than 140	evidence that standing pulse rate is higher
	than the sitting pulse rate.

b) A matched-pairs design like this allows for direct comparison of the treatments on each subject. This eliminates lurking variables that exist due to differences between people.